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The problem of the plane diffraction of a nonstationary acoustic pres- 
sure wave on a fixed infinite plate of a given width has been solved by 
the method of successive approximations in [I]. III the general case, 
under the action of an impinging pressure wave, the plate rill start to 
move which considerably complicates the problem. Below, a method de- 
veloped by Fok [21 is used to obtain an exact solution by quadratures of 
that problem. vith account of the displacement of the plate; the pres- 
sure within the liquid is determined and also the force exerted by the 
liquid on the plate is calculated; the equation for the plate motion is 
set up and its solution for an arbitrary instant of time is given; an 
explicit relation between the shape of the impinging wave and the mode 
of plate motion is established; the initial transient of the plate motion 
within a time interval equal to twice the diffraction time is analyzed. 

1. Assume that a plane wave having a pressure profile given by 

P(E)=0 for EGO 

meets at a time t = 0 a thin rigid plate - l/2 < x < l/2, which is situ- 
ated in the plane z = 0 (Fig. 1). 

Under the impact of the wave the 
plate will start moving with a velocity 
V = V(t) where V(0) = 0. We shall de- 
t&mine the pressure within the liquid 
for t > 0. To that end one needs to 

Fig. 1. 
solve the equation 

1 f32p azp Pp 
------xx 
c2 at2 aTf@ (I.11 
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for conditions 

3P 8V 
-=- 
aZ fJo at 

for 2 -; 0 (1.2) 

p=P t-L 
( ) C 

for t<O (1.3) 

Aere u(x, t) is the velocity in direction of z-axis within the plane 
s = 0, E and pu are the speed of sound and the density of stagnant liquid, 
respectively. 

Let us denote by p-(x, z, t) and p+(x, z, t) the pressure for z < 0 
and z > 0 respectively. The solution rill be taken in the form r3.41 

p+(r, z, t)= ep,!? dt v (Et 7) 4 

n at s s 
0 x; 1/c2 (C - r)2- (32 - 5)“~22 

(1.4) 

6* = t f z/c, X+=xf)/CB(t-T)2-22 

It can be readily verified that functions p_ and p+ satisfy Equation 

(1.1) and conditions (1.2) and (1.3). 

We shall adopt 

22 
21 = -i’ 

and we shall omit 

dimensionless quantities 

2ct V 
h= -j-s 

P 
Vl’C’ Pl’poc2’ p1= j$ 

in the following the index 1. 

The pressure drop along the plate is 

I x+( f-r) 

* 
s s 

dT v (E> 7) d6 

0 X_-(t_-T) I/o --F-_(~ - EP 1 
Outside the plate for z = 0 the pressure is a continuous function 

P- (5, 0, t) = P+ (5, 0, 4 for 1.z I > 1 

(1.5) 

(1.6) 

We 

we 

The function u(x, t) entering solution (1.4) is unknown off the plate. 
determine that function for ( ~1 > 1 using relation (1.6). To that end 
solve the integral equation of the first type 

1 x+(f-s) 
a s s dr v (E, 4 dE 

at o +-+) v/et - @a - (z-E)3 
- JCP (t) = 0 for 12 I> 1 (1.7) 

A similar equation uas solved in [51. 
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We shall apply to (1.7) tbe Laplace transform with respect to t arid 
denote by P(A), P(h) and &x* Xl t&e transforas of the functions P( tf, 
V(t) and II(X, t) respectively. Considering the $( - X. A) = C#J(X, A) we 
obtain 

Here K, is the MacDonald function. For sake of convenience we shall 

Rut 

2-1 =x1, tp&1+1, h)=:cpl@I, h) 

aad we shall omit the index 1; then Equation (1.8) assumes the form 

We 

a IS m14(h,x-~f)+Ko~a,x+2+E.l~l(P(5~ *)dg+~~~I)~~o~~l~+6l)~~)-- 
0 0 

-zP*(hj=O fx>O) U.9) 

The integral Equation (1.9) will be solved by the method of Fok [21. 
shall dwell here on the main outline of the solution. Applying to 

(1.9) the Laplace transfora with respect to t, we obtain 

liere 

@ (6, k) = T e-h’x cp (2, h) dx 

0 

p* (hj + v+ (h) cx3 
- kh *n s 1 - ,-2E 

_- 

In order that the solution of Equation (1.7) be bounded for t x( > 1 
and t > 0 and integrable with regard to x in an arbitrary final interval, 
it is necessary that the funotlon @(k. A) be regular for Ra k > 0 and 
that it tend toward zero for k -, 0~). Then, the function G(k, A) is regular 
in the strip 0 < Re k < Re A and tends toward zero for k -) 0. Thus. this 
function can be expressed by meaas of a 
which can be so deferred that it almost 
regularity 

+& hi &XI 
G(kJ)=-& 1 !i.!=jdg+2;. 5 

-im E;- k x-i00 

Cauchy integral. the contour of 
fully embraces the strip of 

F$&!$ dF, = G1 (k, h) + Gz (k, hj (1.11) 
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+ v* w O3 s 1 - e-24 

x )\ E(E+k)fE--- 
df (1.12) 

is 8 regular function In a semi-plane Re k > 0 and function G,(k. A) is 

regular in a semi-plane Re k < Re A. 

Snbstituting (1.11) into (1.10) we obtain 

m 

;z; + Gz (k,h)= y s @ (f, v d% - Ga fk, h) (1.13) 
A (E - k) V%” - I.* 

In (I. 13) the left part is regular in a semi-plane Re k > 0 and the 

right part is regular In a semi-plane Re k < Re x and both parts tend 

toward zero for k + -. ConseqaentlJ, both psrts of Eqa&tloE (1.13) equal 

zero. Thus, considering (1.12) re obtain 

CD (k, h) =- dh + k G1 (k, I.)= 

p* (?w) v* (3%) co s 1 - ,-2E 

=ky’f-- x ,. %(%+k)1/%-- 
d% - 

(Rek > 0) (1.14) 

Fig. 2. 
Using the inverse taplace transform, first 

with respect to k and then with respect to X 
we Obtain from (1.14) the velocity distribution for z = 0 in the rari- 
ables s, t 

u (z, tf = V(t) in S, v (2, t)= P(t) in Se 
1 

v (5, t) = P (2) + 1 
s 

[P (t - z) - V (t - z)] V~--l~1+1 

s VI+-1 [Xl-l 7 
dT inS1 (1.15) 

and for the velocity in the renaining dOB8inS we obtain 8 recurrence 

formula 
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where the function V(X, t) under the integral is known if the solution 
has been found in domains S,, S3, . . . , S,_ 1 (Fig. 2). 

For the case oi’ a fixed plate one should put in (1.13) V(t) = 0 and 
in this case one may consider the problen solved. The pressure within 
liquid is then calculated from (1.4) and the pressure drop across the 
plate is determined from (1.5). 

In the case of a moving plate one has to set up the equation of the 
plate motion and having solved it one must determine the function V(t). 
This rill be the subject of the present discussion. 

2. He shall now calculate the distribution of the pressure drop on the 
plate for z > 0. For the initial period of time, depending upon the 
values of z and Q three different cases are possible (Fig. 3). 

The first case 0 < x < 1 - t, t < 1 (Fig. 3a) 

Am=2 
C 

P(t)- $$ 

The second case 1 - t < z 

ss V (T) dtdr 
o J/(t _ qB+._~)P I = 2 IP @) - v (4 (2.1) 

< 1, t < 1 and t - 1 < z C 1. t > 1 (Fig.3b) 

+ss v 
ft&p *)d%df 
(t - r)*-(z-&)* II 

01 

Here 
f 

f@,G= I s fi mx-L 
[P(t-r)-V((t-T)] s d,c 

z 

Introducing characteristic coordinates 

one can show that 

q = t + 2, t1=t--z 

ss 
f (Et v) d5 dv 

ss 
[J’ (r) - V (r)] dkdr 

o, v (t--t)~-(C- EJ” = (I, v(t -?)a-(r -- g)* (2.2) 



A nonstationary prevrurc uavc on a moving plate 273 

Taking into account (2.2) one obtains after formidable calculations 
(2.3) . , 

1-(1-x) 

A~a=2 ( Ptt)--Vt(tj - f& $ [P(T)- VW1 
0 [ t+arcsin(I-2 G I ) dr 

The third case 0 < x < t - 1, t > 1 (Fig. 3~). In cmalogy with the 
previous case we obtain 

1-41-x) 

~~ = 2 p(t)-.v(t) 5 [P(s)--V(T)~ .?f arc sin I_ c 1 -2 :s 
0 )I dT- 

1 a 
1-(1+x) 

-xx s IP h-j - v @)J C p+s*osin (2.4) 
0 

We shall Dote that in (2.1). (2.3) aDd (2.4) the term tP(t) expresses 

the pressDre OD a stationary infinite Plate, the ten 2Y( t) is the chaDge 
of the pressure drop resulting from the displacement of the plate and the 

integral expressions account for the diffraction effects on the edges. 

\ 

a 

Pig. 3. 

The force acting OD a unit length of the plate is 

F(t)=2 i A~xkc=2[~(Afi&+ 5 A@] for O<t<l 
0 0 1-t 

F(t)=2 iApdx=2[‘~‘A@+ s’ A&z] for lgtQ2 
0 0 t-1 

Skipping the calculations we obtain in both cases 
t 

F (t) = 4 
( 
P (t) - V(t) - $- 5 [P (T) -v (r)] dt 

> 
(0 < t < 2j 

0 

For the time t > 2 we Obtain accordingly 

F (t) = 4 P (t) - V (t) - +- ‘s [P (t) -V (r)] dr - R, (t)) (;>lr 2 “” + 2 - 9 , .. 
m 

(2.5) 

(2.6) 

38re 
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.gJ=x-Q-T), z1=(t+2n-x)/2, .$=f.+1-2n 

58 = x + (t - T), x2 = t - %b, %4=1--z+t--r 

is a knorn function if one has found the solution for t < 2n. 

Assuue that the plate is subjected only to hydrodynamic pressure. 
Neuton’s lar in dimensionless variables rill have the form 

V’ (t) = ; F (t) (e=$ (2.7) 

rhere h is the thickness and p is the density of the plate. 

Using (2.5) and (2.6) and differentiating (2.7) once rith regard to t. 

ue obtain 

V” (t) + eV’(t) - +-eV (t) = e 
1 

P’(t) - $ p (t) 1 (O<t<o P3) 
V” (t) + eV’ (t) - +eV (t) = e P’ (t) - + p (t) - R;(t) 

C 1 ( 2n<t<2n+2 
n=l,2,... > 

rith the conditions 

v (0) = 0, V’ (0) = eP (0) 

v = v (2n), V’ = e [p (2n) - V (2n) - R, (2n)l for t=2n (2.9) 

where Y(2n) and Rs(2n) are hhoun if the solution for t Q 2n has been 

found. 

5olving these equations .ue obtain (2.10) 

f 

V(t)= h iA (o<t<2) 
1 

s 
a 0 

P(t-T)[(hl - -$+-(~r ~ ~)f+']dT 

i-273 

v (t)= 
hAa s 

0 

P(t-T) [(hl-S)e~.‘(L2--)eh”]dT + ;yL, [&,&(t-2’k 

i-2n 

- h2eW2y_ 

hl ” ha s 

R n(t - zm1e 
&T _ &z’) dT 2n<t\(2n+2 

n,= 1, 2,. . . > 
0 

rhere 

h,,, = - (e $: V/e” + 24 /2 

Thus, the velocity of the plate is determined successively through the 
time interval A t = 2 in accordance with the Formulas (2.10). 

golving equations (2.8) for P(t) re obtain 
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W=$[V’(t) t ~+$)v(t,+; f e(t-t)‘2V (‘c) dr 
1 

(0 B t d 2) 
0 (2.11) 

p (t) = $ {V# (t) - V’ (24 + (8 + f) [V (t) -v (241 + e [R,(t) - R,(2n) _I. 

e+rU2 [V(t) - 2~ R, (z)] dr 
2n<t<2n+2 
n=1,2,... 

m 
The expressions (2.11) c8n be utilized to determine In acoustic 

approximation the profile of the impinging wave if experimental d8t8 

about the motion of the plate are known. 

We consider now the plate in the initial time period 0 < t 6 l/c. 

Returning to dlmension81 variables in (2.10) we obtain 

(2.12) 

as 

we 

Let us 8ssume that the wave is short. Then its action c8n be treated 

8s Impulsive impact. Denoting by I the specific impulse of the wave 

obtain from (2.12) 

exp exp 

We observe that Y(t) = 0 at a time 

I In (VG + 2e + e + 1) 1 
t* = 7 

VL?“+2e ’ 
t*<,, $<o 

It follows that in the case of 8 short lasting wave, there is a 

moment during the passage of the diffraction wave from one edge of the 

plate to the other, when the velocity of the plate decreases to zero and 

then it changes its sign. ObviousLy, at that time the plate ~111 rnffer 

the largest displacement 

t* 

Umax = s 
V (r) dr= -!!- 1 - (vez + 2e + e + l)-r~vzc 

0 
phcs 3 

Let us assume that the wave has 8 steady profile P = P,. Then it 
follows from (2.12) 

V max = v (f’) = -g [ 1 - (Vea + 243 + e + 1)-‘/Vr*+2r] 
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where t* is the same as in (2.13). It follows that in this case the 

acceleration changes its sign at time t’. 

From the above cases one can infer that also in the case of any other 

arbitrary pressure profiles satisfying the condition f’(t) < 0 the plate 

velocity and acceleration change their sign during the time span t *u l/c 

This result can be related to the strong resistance of the liquid and of 

the diffraction to the motion of the plate. One can expect that sub- 

sequently the plate will gradually slow down its motion. 
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